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ABSTRACT

Previously developed analytical formulations for piezoelectric composite plates are extended to
account for the nonlinear effects of temperature on material properties.  The temperature dependence
of the composite and piezoelectric properties are represented at the material level through the
thermopiezoelectric constitutive equations.  In addition to capturing thermal effects from temperature
dependent material properties, this formulation also accounts for thermal effects arising from: (1)
coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and
(2) pyroelectric effects on the piezoelectric material.  The constitutive equations are incorporated into
a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical,
and thermal behavior of smart structures.  Corresponding finite element equations are derived and
implemented for a bilinear plate element with the inherent capability to model both the active and
sensory response of piezoelectric composite laminates.  Numerical studies are conducted on a simply
supported composite plate with attached piezoceramic patches under thermal gradients to investigate
the nonlinear effects of material property temperature dependence on the displacements, sensory
voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

NOMENCLATURE

a : length of plate F : thermal force vector
b : width of plate h : thickness of plate
D : electric displacement K : stiffness matrix
d : piezoelectric charge constant M : mass matrix
E : electric field p : pyroelectric constant
F : mechanical force vector Q : electric charge vector
f : body force per unit volume q : surface electric charge

th
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Q : thermal electric charge vectorth

R : in-plane shape functions
S : strain Subscripts
s : elastic compliance (, i) : �( ) / �u
T : temperature uu : structural component
t : surface traction u�,�u : piezoelectric component
U : displacement state variable �� : dielectric component
u : displacement
x,y,z : structural axes Superscripts
� : coefficient of thermal expansion : � ( ) / �t
� : electric permittivity a : active component
� : temperature difference E : constant voltage condition
� : mass density s : sensory component
� : stress T : constant temperature condition
� : electric potential state variable � : constant stress condition
� : electric potential
� : through the thickness shape functions

i

(  )  2    2  ..

INTRODUCTION

The development of structural components consisting of piezoelectric materials offers great potential
for improving the performance of advanced aerospace vehicles.  By taking advantage of the direct
and converse piezoelectric effects, as well as the pyroelectric phenomena, piezoelectric composite
materials can be utilized in a variety of shape, vibration, and noise control applications.  These
potential performance advantages have resulted in extensive development of both analytical and
experimental methods to characterize the behavior of piezoelectric materials.  Detailed overviews
of the current state of piezoelectric material technology have been reported by Crawley (1994) and
Rao and Sunar (1994).

Although the typical application of most aerospace structures will involve operations in extreme
temperature environments, only limited research has been performed to study the implications of
thermal effects on the active and sensory response of piezoelectric composite materials.  In general,
there are three distinct physical mechanisms which will influence the thermal response of
piezoelectric composite structures: (1) induction of thermal stresses due to coefficient of thermal
expansion (CTE) mismatch between the various composite and piezoelectric layers, (2) pyroelectric
effects on the piezoelectric element, and (3) the temperature dependence of the composite and
piezoelectric material properties.  Previously reported analytical models incorporating thermal effects
have investigated only the first two thermal physical mechanisms (i.e. CTE mismatch and pyro-
electric phenomena).  Mindlin (1974) initiated analytical studies of thermopiezoelectricity by
formulating two-dimensional plate equations.  Laminated thermopiezoelectric plate and thin shell
theories were reported by Tauchert (1992) and Tzou and Howard (1994), respectively.  Subsequent
developments in thermopiezoelectric finite elements were performed by Rao and Sunar (1993),
Jonnalagadda et al. (1994), Tzou and Ye (1994), and Chandrashekara and Kolli (1995).   Many of
these previous approaches utilize various single layer theories, which have been shown by Robbins
and Reddy (1991, 1993) to have limitations in the analysis of both thick laminates and laminates
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(1)

(2)

(3)

(4)

(5)

containing strong inhomogeneities.  In order to remedy these limitations, layerwise thermo-
piezoelectric finite element approaches have been developed by Lee and Saravanos (1995, 1996a,
1996b).

This paper extends previously developed layerwise finite element formulations [Lee and Saravanos
(1995, 1996a, 1996b)] to also account for the nonlinear temperature dependence of material
properties.  The updated mechanics provides a comprehensive thermal analysis capability for
modeling smart structures, which captures the coupled mechanical, electrical, and thermal response
of piezoelectric laminates at the material level through the thermopiezoelectric constitutive equa-
tions.  A layerwise laminate theory is implemented with the displacements, electric potential, and
temperature modeled as variable fields through the thickness to provide more accurate analysis of
piezoelectric composite laminates.  A corresponding finite element formulation is implemented for
a bilinear plate element.  Numerical studies are conducted to determine the nonlinear effects of
incorporating material property temperature dependence on the displacements, sensory voltages,
active voltages required to minimize the thermal deflections, and stresses of piezoelectric composite
plates subject to thermal gradients.

GOVERNING EQUATIONS

This section outlines the governing equations required to develop the layerwise finite element
formulation for thermopiezoelectric composite structures.  The mechanical response is governed by
the equations of motion

while the electrical response is described by the electrostatic equation

where i, j = 1, 2, 3.  The constitutive equations for a thermopiezoelectric material, with temperature
dependent properties, employing standard contracted notation are

where �, 	 = 1 ,...,6 and k, m = 1, 2, 3.   The small deformation strain-displacement relations are
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(6)

(7)

(8)

(9)

and the electric field vector is related to the electric potential by

Through use of the divergence theorem and neglecting body forces, Eqs. (1) and (2) can be expressed
in an equivalent variational form as

where V represents the volume of both the composite and piezoelectric materials, �  is the boundingt

surface on which surface tractions are applied, and �  represents the piezoelectric material surfacep

to which electrical charges are applied.

By incorporating Eqs. (3)-(6) and introducing both the layerwise and finite element approximations
into Eq. (7), the following discretized finite element equations can be obtained in a compact form
with the electrical potential partitioned into active and sensory components

The mass, stiffness, external force, and thermal force submatrices are functions of the various
material properties, interpolation functions, and plate geometric parameters such that

More detailed descriptions of the layerwise theory and finite element formulation, along with the
specific forms of the submatrices can be found in Lee and Saravanos (1996b).
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TEMPERATURE DEPENDENT MATERIAL PROPERTIES

The various elastic, dielectric, piezoelectric, and pyroelectric properties of piezoelectric materials
are influenced differently by temperature variations depending on the composition and
manufacturing technique.  Piezoelectric materials also possess a characteristic limiting temperature,
called the Curie temperature, beyond which the material loses its piezoelectric properties.  Thus, in
typical applications the operating temperatures must be considerably lower than the Curie
temperature.  In this study, temperature dependent material properties of a PZT-5A piezoceramic
were obtained from manufacturer's data, while published properties of an AS4/3501-6 carbon/epoxy
composite were acquired from Daniel and Ishai (1994).  

The temperature variation of the piezoelectric and composite material properties are implemented
into the constitutive equations Eqs. (3)-(4) in a piecewise linear fashion.  The variation of  PZT-5A
properties (d , � , � , and p ) are shown in Figure 1, while the temperature dependence of the31  33  11   3

AS4/3501-6 moduli and �  are depicted in Figure 2.  All properties are nondimensionalized with22

their respective room temperature values shown in Table 1.  Figures 1 illustrates the nonlinear
variation of the various piezoceramic properties with temperature.  The greatest nonlinearity occurs
for p , while the other properties exhibit a more gradual variation.  For purposes of this study, all3

material properties not illustrated in Figures 1 and 2 are assumed to remain constant with
temperature.

APPLICATIONS

This section presents results of numerical studies to demonstrate the effects of incorporating
temperature dependent material properties.  The problem examined consists of a 37.2 cm x 22.8 cm
x 0.75 mm [0/±45]  AS4/3501-6 carbon/epoxy plate with discrete PZT-5A piezoceramic patchess

attached on both the top and bottom surfaces.  There are fifteen 6.0 cm  x 6.0 cm x 0.13 mm piezo-
ceramic patches uniformly attached to each surface as shown in Figure 3, which also depicts the
finite element discretization for this problem.  A total of eight discrete layers are used through the
thickness of the plate (one layer for each ply of the composite and piezoceramic).  The plate is
simply supported along the two edges parallel to the y-axis and free on the two edges parallel to the
x-axis.  Linear thermal gradients of different values are applied through-the-thickness of the plate
with the bottom surface (z/h = -0.5) fixed at 20�C for all cases and the upper surface (z/h = 0.5)
varying from 45�C to 170�C.  The values of the thermal gradient are selected to fall within the
temperature range of the AS4/3501-6 properties (Fig. 2).  The objective of the numerical study is to
contrast the effects of incorporating temperature dependent material properties with corresponding
results when material properties are assumed to remain temperature independent at the room
temperature values shown in Table 1.

Thermal Deflections.  A combined active/sensory configuration of the piezoceramic patches is used
to study the thermally induced bending deflections and the corresponding sensory voltages in the
plate.  In this configuration, the piezoceramic patches on the upper surface of the plate are configured
as sensors with free electric potentials, while 0 Volts are applied to all the patches on the bottom
surface.  All piezoceramic patches are grounded on the surface in contact with the carbon/epoxy
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plate.  The resulting thermally induced deflection at the center of the plate is shown in Figure 4 for
different applied gradients.  The deflections are nondimensionalized with respect to the total
laminate thickness (h=1.01 mm).  The figure shows that when material properties are assumed to be
temperature independent, a linear variation in deflection is predicted.  In contrast, a nonlinear
variation in the deflection is observed when temperature dependence is incorporated into the
analysis.  Greater discrepancies between the two cases are observed as larger thermal gradients are
applied.

Sensory Voltages.  The corresponding sensory voltages generated by the central piezoceramic patch
on the upper surface of the plate is shown in Figure 5.  As in the case of the deflections, the
assumption of constant material properties leads to a linear variation of the sensory voltages, while
nonlinearities are introduced when temperature dependent material properties are modeled.  Closer
agreement is observed between the two cases than for the deflections.  In actual smart structures
applications, the measured sensory voltages would be used as input into a control algorithm to
generate the necessary applied voltages to the actuators to minimize the thermal deflections.

Thermal Shape Control.  A fully active configuration of the piezoceramic patches is used to study
thermal shape control applications.  In this configuration, all the piezoceramic patches are used as
actuators to minimize the initial bending deformation.  The same active voltages are applied to the
inner surface of all the piezoceramic patches (i.e. the surface in contact with the carbon/epoxy plate),
while the outer surface is grounded.  The initial bending deformation to be minimized is shown in
Figure 6 for the case in which the plate is subjected to a 100�C gradient with 0 Volts applied to the
actuators.  This deformation can be gradually eliminated through the application of increasing active
voltages to the piezoceramic actuators.  Figures 7 and 8 illustrate the reduction in bending achieved
by applying active voltages of 72 V and 145 V, respectively.  These results demonstrate the
capability for thermal shape control using piezoceramic actuators.

Figure 9 depicts the active voltages applied to all the patches to minimize the deflection at the center
of the plate for different applied gradients.  Once again, a nonlinear variation is predicted by the
temperature dependent material property case, while the constant material property case shows a
linear variation that increasingly deviates as larger thermal gradients are applied.  The increasing
discrepancy in the active voltages required to minimize the initial deformation between the two cases
corresponds to the same trend observed for the deflection at the center of the plate (Fig. 4).  Since
the temperature dependent case results in significantly larger deflections for higher temperatures, this
in part justifies why larger active voltages are necessary to control the deflections.

Thermal Stresses.  The stress fields associated with the plate in a fully active configuration are
presented in this section.  A continuous piezoceramic layer is used instead of discrete patches to
reduce the need for a highly refined mesh in this study.  The resulting normal stress (� ) near thexx

center of the plate (x/a=0.5, y/b=0.4, z/h=0.8) for different applied gradients is shown in Figure 10
for applied active voltages of 0 and 100 Volts.  The stresses are nondimensionalized using a product
of the corresponding longitudinal PZT-5A modulus, E , and the total laminate thickness, h.  As in11

the previous cases, the assumption of constant material properties leads to a linear variation of the
stresses with temperature, while nonlinearities are introduced when the temperature dependence in
material properties is incorporated.  Once again, the two cases show larger discrepancies as larger
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thermal gradients are applied.  The application of an active voltage of 100 V produces a
corresponding reduction in normal stress from the 0 V case.  The variation of the stress through-the-
thickness near the center of the plate is illustrated in Figure 11 for the case in which the plate is
subjected to a 150�C gradient with 100 V applied to the actuators.  The results indicate that
incorporating temperature dependent material properties produce generally higher stress levels in all
plies of the plate.

One of the major advantages of using a layerwise approach is to improve the accuracy of out-of-
plane shear stress predictions.  Figure 12 shows the variation of the out-of-plane shear stress (� )xz

near the free edge of the plate (x/a=0.8, y/b=0.5, z/h=0.9) for different applied gradients with active
voltages of 0 and 100 V.  The stresses are nondimensionalized using a product of the corresponding
PZT-5A shear modulus, G , and the total laminate thickness, h.  Once again, the use of temperature13

dependent material properties introduces a nonlinear variation in the stress with temperature, which
increasingly deviates from the constant material case as higher applied gradients are applied.
Application of active voltages of 100 V produces a decrease in the shear stress from the 0 V case.
The variation of the stress through the thickness near the free edge of the plate with an applied
gradient of 150�C and 100 V is shown in Figure 13.  Closer agreement between the constant material
property and temperature dependent material property case is observed for the shear stress.

SUMMARY

Layerwise mechanics were extended to account for the temperature dependence of the composite and
piezoelectric material properties, which were incorporated as piecewise linear functions of
temperature into the thermopiezoelectric constitutive relations.  This formulation provides a unified
capability to comprehensively model the coupled mechanical, electrical, and thermal behavior of
active and sensory piezoelectric composite laminates.  A finite element formulation was developed
and implemented for a bilinear plate element.  Numerical studies were conducted on a simply
supported carbon/epoxy plate with attached piezoceramic patches subjected to thermal gradients.
Results indicate that significant nonlinearities in the variation of displacement, sensory voltages,
active voltages to minimize the centerline deflections, and stresses are introduced when temperature
dependent material properties are incorporated into the analysis.  This indicates the importance of
including temperature dependent material properties in the analysis of thermal piezoelectric
composite structures.  Future experimental work is required in connection with the analytical
developments to characterize the thermal behavior of piezoelectric composite structures.
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TABLE 1: Material properties of piezoceramic (PZT-5A) and carbon/epoxy 
(AS4/3501-6) composite

        Piezoceramic       Carbon/Epoxy
Density (kg/m ):3

� 7700. 1580.

Elastic Moduli (GPa):
E 69.0 142.011

E  69.0 10.322 
E  53.0 10.333 

Poisson's Ratio:
  0.31 0.2712

 0.44 0.2023

  0.38 0.0231

Shear Moduli (GPa):
G 23.3 7.212

G 21.1 4.2923

G 21.1 7.231

Thermal Expansion Coefficient (µm/m �C):
� 1.2 -0.911

� 1.2 27.022

Piezoelectric Charge Constant (pm/V) :
d -154. ----31

Electric Permittivity (nf/m):
� 15.05 ----33

Pyroelectric Constant (mC/m  �C):2 

p -2.0 ----3

Reference Temperature, T ,  (�C): 20. 20.o

Curie Temperature, T ,  (�C): 365. ----c
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Figure 1.—Temperature dependence of PZT-5A properties. (d31 and ε33 data 
   obtained from American Piezo Ceramics, Inc., Mackeyville, PA) (a11 and p3 
   data obtained from Morgan Matroc, Inc., Bedford, OH).
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Figure 3.—Geometry and finite element mesh of AS4/3501-6 carbon/epoxy plate with attached 
   PZT-5A piezoceramic patches.
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Figure 5.—Comparison of sensory voltages at the center of the plate for different 
   applied thermal gradients.
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Figure 10.—Comparison of sxx at (x/a = 0.5, y/b = 0.4,
   z/h = 0.8) for different applied thermal gradients.
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Figure 11.—Through the thickness variation of sxx under
   150 °C gradient with 100 V applied to actuators.
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